论文标题
多目标共识聚类框架用于飞行搜索建议
Multi-objective Consensus Clustering Framework for Flight Search Recommendation
论文作者
论文摘要
在旅游行业中,在线客户会根据几个功能预订旅行行程,例如旅行的成本和持续时间或便利设施的质量。为了为旅行搜索提供个性化的建议,需要对客户进行适当的细分。开发了聚类集合方法是为了克服经典聚类方法的众所周知的问题,每个方法都依赖于不同的理论模型,因此只能在数据空间中识别仅与该模型相对应的群集。聚类集合方法结合了多个聚类结果,每种聚类结果来自不同的算法配置,以生成与初始簇之间协议相对应的更健壮的共识群集。我们提出了一个新的聚类集合集合多目标优化的框架,用于分析Amadeus客户搜索数据并改善个性化建议。该框架优化了聚类集合搜索空间中的多样性,并自动确定适当数量的群集,而无需用户的输入。实验结果将这种方法的效率与Amadeus客户搜索数据的其他现有方法进行了比较,该方法是内部(调整后的RAND指数)和外部(Amadeus业务指标)验证的。
In the travel industry, online customers book their travel itinerary according to several features, like cost and duration of the travel or the quality of amenities. To provide personalized recommendations for travel searches, an appropriate segmentation of customers is required. Clustering ensemble approaches were developed to overcome well-known problems of classical clustering approaches, that each rely on a different theoretical model and can thus identify in the data space only clusters corresponding to this model. Clustering ensemble approaches combine multiple clustering results, each from a different algorithmic configuration, for generating more robust consensus clusters corresponding to agreements between initial clusters. We present a new clustering ensemble multi-objective optimization-based framework developed for analyzing Amadeus customer search data and improve personalized recommendations. This framework optimizes diversity in the clustering ensemble search space and automatically determines an appropriate number of clusters without requiring user's input. Experimental results compare the efficiency of this approach with other existing approaches on Amadeus customer search data in terms of internal (Adjusted Rand Index) and external (Amadeus business metric) validations.