论文标题

除了摄像机运动模糊之外,删除了:如何处理DEBLURING的异常值

Beyond Camera Motion Blur Removing: How to Handle Outliers in Deblurring

论文作者

Chang, Meng, Yang, Chenwei, Feng, Huajun, Xu, Zhihai, Li, Qi

论文摘要

摄像机运动去布拉林是实现更好成像质量的重要低级视觉任务。当场景具有饱和像素等异常值时,捕获的模糊图像将变得更加难以恢复。在本文中,我们提出了一种新颖的方法来处理与异常值的相机运动模糊。我们首先提出一个边缘感知量表 - 电流网络(EASRN)进行脱毛。 EASRN具有一个单独的脱蓝色模块,该模块可以在多个尺度上除去模糊和一个融合不同输入尺度的UPPLISPRING模块。然后提出了一个显着的边缘检测网络来监督训练过程并限制边缘恢复。通过模拟相机运动并添加各种光源,我们可以生成饱和截止的模糊图像。使用建议的数据生成方法,我们的网络可以学会有效地处理异常值。我们在公共测试数据集上评估了我们的方法,包括GoPro数据集,Kohler的数据集和LAI的数据集。客观的评估索引和主观可视化都表明,与其他最先进的方法相比,我们的方法会导致更高的质量。

Camera motion deblurring is an important low-level vision task for achieving better imaging quality. When a scene has outliers such as saturated pixels, the captured blurred image becomes more difficult to restore. In this paper, we propose a novel method to handle camera motion blur with outliers. We first propose an edge-aware scale-recurrent network (EASRN) to conduct deblurring. EASRN has a separate deblurring module that removes blur at multiple scales and an upsampling module that fuses different input scales. Then a salient edge detection network is proposed to supervise the training process and constraint the edges restoration. By simulating camera motion and adding various light sources, we can generate blurred images with saturation cutoff. Using the proposed data generation method, our network can learn to deal with outliers effectively. We evaluate our method on public test datasets including the GoPro dataset, Kohler's dataset and Lai's dataset. Both objective evaluation indexes and subjective visualization show that our method results in better deblurring quality than other state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源