论文标题
六角硼氮化物封装对少数层黑色磷的结构和振动特性的影响
The impact of hexagonal boron nitride encapsulation on the structural and vibrational properties of few layer black phosphorus
论文作者
论文摘要
二维分层材料(例如黑磷)的封装对于它们在空气中的稳定性至关重要。然而,封装提出了几个问题,即,它如何通过弱范德华力,黑磷的特性以及是否可以根据需要调整这些特性。在这些问题的提示下,我们使用第一原理方法在密度功能理论的框架中使用了二层黑磷的结构和振动特性研究了六角形硝化硼对少数层黑磷的结构和振动特性的影响。我们证明,与六角硼硝化物的封装对黑色磷材料施加了双轴应变,从而通过增加裂解角度和内部内p-p键来减小层的厚度,从而使其脱落的结构变平。这项工作例证了封装过程后分层材料中结构参数的演变。我们发现,封装后,磷烯(单层黑磷)在扶手椅方向上收缩了1.1%,在锯齿形方向上延伸1.3%,而很少有层的黑色磷在扶手椅方向上最高3%。但是,这些相对较小的菌株由六角型BN诱导,导致黑磷的振动特性发生了重大变化,高频光学模式$ a_g^1 $的红移高达10 cm $^{ - 1} $。通常,封装过程引起的结构变化为二维晶体的底物控制应变工程打开了大门。
The encapsulation of two-dimensional layered materials such as black phosphorus is of paramount importance for their stability in air. However, the encapsulation poses several questions, namely, how it affects, via the weak van der Waals forces, the properties of the black phosphorus and whether these properties can be tuned on demand. Prompted by these questions, we have investigated the impact of hexagonal boron nitride encapsulation on the structural and vibrational properties of few layer black phosphorus, using a first-principles method in the framework of density functional theory. We demonstrate that the encapsulation with hexagonal boron nitride imposes biaxial strain on the black phosphorus material, flattening its puckered structure, by decreasing the thickness of the layers via the increase of the puckered angle and the intra-layer P-P bonds. This work exemplifies the evolution of structural parameters in layered materials after the encapsulation process. We find that after encapsulation, phosphorene (single layer black phosphorous) contracts by 1.1% in the armchair direction and stretches by 1.3% in the zigzag direction, whereas few layer black phosphorus mainly expands by up to 3% in the armchair direction. However, these relatively small strains induced by the hexagonal BN, lead to significant changes in the vibrational properties of black phosphorus, with the redshifts of up to 10 cm$^{-1}$ of the high frequency optical mode $A_g^1$. In general, structural changes induced by the encapsulation process open the door to substrate controlled strain engineering in two-dimensional crystals.