论文标题
真空I的平方根
The square root of the vacuum I. Equivariance for the $κ$-symmetry superdistribution
论文作者
论文摘要
切向量规超对称的完整自然的几何和物理解释,也称为$κ$ - 对称性,是一大类绿色 - schwarz(-type)super-$σ$ - 超级 - $ p $ - 米模型,用于超级套件的同质套装,是一个同质的套装,是一个同质的套装,是一个既有的套餐,都建立了超级组合的套餐,以置于超级组合,并建立了一个超级组合的组合。超级$σ$ - 模型,并在许多物理示例上进行了说明。超对称性在超级$σ$ - 模型的supertarget的切线捆绑中被识别为通过其弱派生的标志生成的 - 产生的 - supertarget的真空叶子。还可以证明,可以从规范上提起与现场理论的超级背景相关的扩展的休斯 - 波尔钦斯基$ p $ p $ p $ p $ p $ p $ p $ p $ p $,并且以典型的线性化等效结构的形式,与真空的残留全局超对称性相兼容。
A complete and natural geometric and physical interpretation of the tangential gauge supersymmetry, also known as $κ$-symmetry, of a large class of Green-Schwarz(-type) super-$σ$-models for the super-$p$-brane in a homogeneous space of a (supersymmetry) Lie supergroup is established in the convenient setting of the topological Hughes-Polchinski formulation of the super-$σ$-model and illustrated on a number of physical examples. The supersymmetry is identified as an odd superdistribution in the tangent sheaf of the supertarget of the super-$σ$-model, generating - through its weak derived flag - the vacuum foliation of the supertarget. It is also demonstrated to canonically lift to the vacuum restriction of the extended Hughes-Polchinski $p$-gerbe associated with the superbackground of the field theory, and that in the form of a canonical linearised equivariant structure thereon, canonically compatible with the residual global supersymmetry of the vacuum.