论文标题
与关系的震颤路径代数的变形
Deformations of path algebras of quivers with relations
论文作者
论文摘要
令$ a = \ bbbk q / i $为任何有限箭袋的路径代数$ q $ modulo任何双面的理想$ i $关系,让$ r $是满足$ i $的钻石条件的任何还原系统。我们介绍了还原系统变形的固有概念,并表明,关联代数$ a $变形与还原系统$ r $变形之间存在变形问题,后者由天然的,明确的l $ _ \ f $ _ \ fly Infty $ algebra控制。特别是,尤其是,$ $ can上的关联乘法的任何形式变形均由组合定义的恒星产品给出,并且可以使用还原系统的方法对$ a $ a $ a的变形理论进行具体和完整的描述。对于有限数量的变量中的多项式代数,可以通过与图形相关的双差算子来描述此组合恒星产品,我们将其与Kontsevich通用量化公式中出现的图进行比较。 使用Quiver $ Q $路径的可接受命令的概念,我们为存在代数的形式变形的代数提供标准,我们也通过还原系统的代数品种来解释几何形式。在这种情况下,L $ _ \ infty $代数的Maurer-Cartan方程可以看作是对Koszul代数的Braverman-Gaitsgory标准的概括。
Let $A = \Bbbk Q / I$ be the path algebra of any finite quiver $Q$ modulo any two-sided ideal $I$ of relations and let $R$ be any reduction system satisfying the diamond condition for $I$. We introduce an intrinsic notion of deformation of reduction systems and show that there is an equivalence of deformation problems between deformations of the associative algebra $A$ and deformations of the reduction system $R$, the latter being controlled by a natural, explicit L$_\infty$ algebra. It follows in particular that any formal deformation of the associative multiplication on $A$ can, up to gauge equivalence, be given by a combinatorially defined star product, and the approach via reduction systems can be used to give a concrete and complete description of the deformation theory of $A$. For the polynomial algebra in a finite number of variables, this combinatorial star product can be described via bidifferential operators associated to graphs, which we compare to the graphs appearing in Kontsevich's universal quantization formula. Using the notion of admissible orders on the set of paths of the quiver $Q$, we give criteria for the existence of algebraizations of formal deformations, which we also interpret geometrically via algebraic varieties of reduction systems. In this context the Maurer-Cartan equation of the L$_\infty$ algebra can be viewed as a generalization of the Braverman-Gaitsgory criterion for Poincaré-Birkhoff-Witt deformations of Koszul algebras.