论文标题
通过顺序蒙特卡洛的广义贝叶斯过滤
Generalized Bayesian Filtering via Sequential Monte Carlo
论文作者
论文摘要
我们引入了一个在可能性误差下的一般状态空间隐藏马尔可夫模型(HMM)中推断的框架。特别是,我们利用广义贝叶斯推理(GBI)的损失理论观点来定义HMMS中的广义过滤递归,从而解决模型错误指定下的推断问题。在此过程中,我们通过利用$β$ divergence制定了原则性的程序,以防止观察污染。通过顺序的蒙特卡洛方法(SMC)使提出的框架进行操作,其中大多数标准粒子方法及其相关的收敛结果很容易适应新设置。我们将方法应用于对象跟踪和高斯过程回归问题,并观察到标准过滤算法和其他强大过滤器的性能提高。
We introduce a framework for inference in general state-space hidden Markov models (HMMs) under likelihood misspecification. In particular, we leverage the loss-theoretic perspective of Generalized Bayesian Inference (GBI) to define generalised filtering recursions in HMMs, that can tackle the problem of inference under model misspecification. In doing so, we arrive at principled procedures for robust inference against observation contamination by utilising the $β$-divergence. Operationalising the proposed framework is made possible via sequential Monte Carlo methods (SMC), where most standard particle methods, and their associated convergence results, are readily adapted to the new setting. We apply our approach to object tracking and Gaussian process regression problems, and observe improved performance over both standard filtering algorithms and other robust filters.