论文标题

捕获:使用深层神经网络以全息胶体的表征和跟踪

CATCH: Characterizing and Tracking Colloids Holographically using deep neural networks

论文作者

Altman, Lauren E., Grier, David G.

论文摘要

在线全息显微镜提供了有关胶体分散剂特性的无与伦比的财富。用Lorenz-Mie的光散射理论分析一个胶体粒子的全息图可产生该粒子的三维位置,同时报告其大小和折射率,并以每千分辨率的分辨率报告其大小和折射率。以这种方式分析几千个全息图提供了构成分散体的颗粒,即使对于复杂的多组分系统也是如此。所有这些有价值的信息都以三个计算昂贵的步骤为代价:(1)在记录的全息图中识别和本地化感兴趣的特征,(2)基于相关特征的特征估算每个粒子的性质,最后(3)通过像素 - 逐个像素拟合的估计值适合于生成模型。在这里,我们演示了完全基于机器学习技术的端到端实现。与深卷积神经网络的胶体全息(捕获)表征和跟踪足以实时应用,否则效果超过常规的分析算法,尤其是对于异构和拥挤的样本。我们通过对自由流动和全息捕获的胶体球的实验来证明该系统的功能。

In-line holographic microscopy provides an unparalleled wealth of information about the properties of colloidal dispersions. Analyzing one colloidal particle's hologram with the Lorenz-Mie theory of light scattering yields the particle's three-dimensional position with nanometer precision while simultaneously reporting its size and refractive index with part-per-thousand resolution. Analyzing a few thousand holograms in this way provides a comprehensive picture of the particles that make up a dispersion, even for complex multicomponent systems. All of this valuable information comes at the cost of three computationally expensive steps: (1) identifying and localizing features of interest within recorded holograms, (2) estimating each particle's properties based on characteristics of the associated features, and finally (3) optimizing those estimates through pixel-by-pixel fits to a generative model. Here, we demonstrate an end-to-end implementation that is based entirely on machine-learning techniques. Characterizing and Tracking Colloids Holographically (CATCH) with deep convolutional neural networks is fast enough for real-time applications and otherwise outperforms conventional analytical algorithms, particularly for heterogeneous and crowded samples. We demonstrate this system's capabilities with experiments on free-flowing and holographically trapped colloidal spheres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源