论文标题
牛顿 - 科恩科夫的舒伯特品种的多塔是由群集结构产生的
Newton-Okounkov polytopes of Schubert varieties arising from cluster structures
论文作者
论文摘要
牛顿 - 科恩科夫(Newton-Okounkov)机构的理论是牛顿多元化品种的概括,它提供了一种构造投射品种的复曲面变性的系统方法。在本文中,我们从集群代数理论中研究了舒伯特品种的牛顿 - 科恩科夫体。我们使用特定的估值来构建牛顿 - 科恩科夫的身体,这些估值在集群理论中概括了扩展的G-向量,并讨论了这些物体与弦乐多型和中岛 - Zelevinsky多型的关系。
The theory of Newton-Okounkov bodies is a generalization of that of Newton polytopes for toric varieties, and it gives a systematic method of constructing toric degenerations of projective varieties. In this paper, we study Newton-Okounkov bodies of Schubert varieties from the theory of cluster algebras. We construct Newton-Okounkov bodies using specific valuations which generalize extended g-vectors in cluster theory, and discuss how these bodies are related to string polytopes and Nakashima-Zelevinsky polytopes.