论文标题

不可压缩杆的理论:通过$γ$ -Convergence的严格推导

Theories for incompressible rods: a rigorous derivation via $Γ$-convergence

论文作者

Engl, Dominik, Kreisbeck, Carolin

论文摘要

我们使用变异收敛来得出一维杆理论的层次结构,从非线性弹性中的三维模型开始,但受局部体积预测的约束。由此产生的$γ$限制的密度取决于最小化问题,其痕量约束是由不可压缩性决定性条件的线性化产生的。虽然下限的证据取决于适当的约束正规化,但上限需要仔细,明确的局部保留恢复序列。在借助无差分扩展的帮助下,将横截面变量解耦后,我们应用一个内部扰动参数来强制执行所需的非凸层决定符约束。为了说明我们的发现,我们讨论了各向同性材料的特殊情况。

We use variational convergence to derive a hierarchy of one-dimensional rod theories, starting out from three-dimensional models in nonlinear elasticity subject to local volume-preservation. The densities of the resulting $Γ$-limits are determined by minimization problems with a trace constraint that arises from the linearization of the determinant condition of incompressibility. While the proofs of the lower bounds rely on suitable constraint regularization, the upper bounds require a careful, explicit construction of locally volume-preserving recovery sequences. After decoupling the cross-section variables with the help of divergence-free extensions, we apply an inner perturbation argument to enforce the desired non-convex determinant constraint. To illustrate our findings, we discuss the special case of isotropic materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源