论文标题

通过先前的预测分布的灵活性启发

Flexible Prior Elicitation via the Prior Predictive Distribution

论文作者

Hartmann, Marcelo, Agiashvili, Georgi, Bürkner, Paul, Klami, Arto

论文摘要

未知模型参数的先前分布在基于贝叶斯方法的统计推断过程中起着至关重要的作用。但是,即使原则上有详细的先验知识,也很难指定合适的先验。挑战是以概率分布的形式表达定量信息。事先启发通过从专家中提取主观信息并将其转换为有效的先验来解决这个问题。但是,大多数现有的方法都需要提供有关不可观察的参数的信息,这些参数对数据生成过程的影响通常很复杂且难以理解。我们提出了一种仅需要了解可观察结果的知识的替代方法 - 专家提供的知识通常更容易。在原则上的统计框架的基础上,我们的方法利用该模型暗示的先前预测分布自动将专家对合理结果值的判断转换为对参数的合适先验。我们还提供计算策略来执行推理和指南,以促进实际使用。

The prior distribution for the unknown model parameters plays a crucial role in the process of statistical inference based on Bayesian methods. However, specifying suitable priors is often difficult even when detailed prior knowledge is available in principle. The challenge is to express quantitative information in the form of a probability distribution. Prior elicitation addresses this question by extracting subjective information from an expert and transforming it into a valid prior. Most existing methods, however, require information to be provided on the unobservable parameters, whose effect on the data generating process is often complicated and hard to understand. We propose an alternative approach that only requires knowledge about the observable outcomes - knowledge which is often much easier for experts to provide. Building upon a principled statistical framework, our approach utilizes the prior predictive distribution implied by the model to automatically transform experts judgements about plausible outcome values to suitable priors on the parameters. We also provide computational strategies to perform inference and guidelines to facilitate practical use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源