论文标题

学习组合优化的可解释错误功能问题建模

Learning Interpretable Error Functions for Combinatorial Optimization Problem Modeling

论文作者

Richoux, Florian, Baffier, Jean-François

论文摘要

在约束编程中,通常将约束表示为允许或禁止值组合的谓词。但是,某些算法利用了更细的表示:错误函数。不过,它们的用法是有价值的:这使问题建模变得更加困难。在这里,我们提出了一种方法,可以自动学习与约束相对应的错误函数,给定确定分配是否有效的函数。据我们所知,这是自动学习错误函数的第一次尝试以实现硬性约束。我们的方法使用了一种神经网络的变体,我们将其命名为可解释的组成网络,从而使我们获得可解释的结果,与常规的人工神经网络不同。对5个不同约束的实验表明,我们的系统可以学习扩展到高维度的功能,并且可以在不完整的空间上学习相当好的功能。

In Constraint Programming, constraints are usually represented as predicates allowing or forbidding combinations of values. However, some algorithms exploit a finer representation: error functions. Their usage comes with a price though: it makes problem modeling significantly harder. Here, we propose a method to automatically learn an error function corresponding to a constraint, given a function deciding if assignments are valid or not. This is, to the best of our knowledge, the first attempt to automatically learn error functions for hard constraints. Our method uses a variant of neural networks we named Interpretable Compositional Networks, allowing us to get interpretable results, unlike regular artificial neural networks. Experiments on 5 different constraints show that our system can learn functions that scale to high dimensions, and can learn fairly good functions over incomplete spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源