论文标题

在大气对流边界中温度的对数曲线上

On the logarithmic profile of temperature in the atmospheric convective boundary layers

论文作者

Cheng, Yu, Li, Qi, Gentine, Pierre

论文摘要

在天然和工程系统中广泛观察到壁挂的湍流,例如地球表面附近的空气流,河流中的水流,并在汽车或飞机上流动。冯·卡尔曼(VonKármán)在1930年提出的壁挂式湍流中的通用对数速度曲线是湍流的少数精确物理描述之一。但是,当存在浮力效应时,该通用对数定律无法充分描述平均速度和温度曲线。 Monin-Obukhov的相似性理论(大多数)是在1954年提出的,它是解释这些浮力效应并描述大气边界层的基石理论。大多数已在几乎所有的全球天气,气候和水文模型中都用于描述平均速度,温度和标量剖面对浮力的依赖性。根据大多数人的说法,随着浮力效应变得重要,对数温度曲线会分解。相比之下,我们在这里表明,这种长期以来的理论不适用于温度。我们提出了一种新的理论,用于近壁温度的对数轮廓,该理论纠正了大多数陷阱,并得到了对流大气边界层的高分辨率直接数值模拟和现场观察的支持。浮力效应不会改变对数的性质,而是与通用vonKármán斜率相比调节温度曲线的斜率。新的配方具有广泛的应用,例如在气候模型中,拟议的新温度日志定律应导致更现实的大陆表面温度,这会受到浮力的强烈影响。

Wall-bounded turbulent flows are widely observed in natural and engineering systems, such as air flows near the Earth's surface, water flows in rivers, and flows around a car or a plane. The universal logarithmic velocity profile in wall-bounded turbulent flows proposed by von Kármán in 1930 is one of the few exact physical descriptions of turbulence. However, the mean velocity and temperature profiles cannot be adequately described by this universal log law when buoyancy effects are present. Monin-Obukhov similarity theory (MOST), proposed in 1954, has been the cornerstone theory to account for these buoyancy effects and to describe the atmospheric boundary layer. MOST has been used in almost all global weather, climate and hydrological models to describe the dependence of the mean velocity, temperature and scalar profiles on buoyancy. According to MOST, the logarithmic temperature profile breaks down as buoyancy effects become important. In contrast, here we show that this long-standing MOST theory does not apply for temperature. We propose a new theory for the logarithmic profile of near-wall temperature, which corrects MOST pitfalls and is supported by both high-resolution direct numerical simulations and field observations of the convective atmospheric boundary layer. Buoyancy effects do not modify the logarithmic nature but instead modulate the slope of the temperature profile compared to the universal von Kármán slope. The new formulation has widespread applications such as in climate models, where the proposed new temperature log law should lead to more realistic continental surface temperature, which are strongly impacted by buoyancy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源