论文标题

深度学习模型诊断的抽样(技术报告)

Sampling for Deep Learning Model Diagnosis (Technical Report)

论文作者

Mehta, Parmita, Portillo, Stephen, Balazinska, Magdalena, Connolly, Andrew

论文摘要

深度学习(DL)模型已经在具有高维数据的许多领域(例如图像,音频和文本)中实现了改变范式的性能。但是,深神经网络的黑盒性质不仅是在诸如医学诊断之类的应用中采用的障碍,这些应用是必不可少的,而且还阻碍了表现模型下的诊断。诊断或解释DL模型的任务需要计算其他工件,例如激活值和梯度。这些文物的数量很大,其计算,存储和查询提出了重大的数据管理挑战。 在本文中,我们将DL诊断阐明为数据管理问题,并提出了一套一般但代表的查询集,以评估努力支持这项新工作量的系统。我们进一步开发了一种新型的数据采样技术,该技术可为这些模型调试查询产生近似但准确的结果。我们的采样技术利用了DL模型学到的较低维表示,并着重于此较低维空间中数据的模型决策边界。我们在一个标准的计算机视觉和一个科学数据集上评估我们的技术,并证明我们的采样技术在查询准确性方面优于各种最先进的替代方案。

Deep learning (DL) models have achieved paradigm-changing performance in many fields with high dimensional data, such as images, audio, and text. However, the black-box nature of deep neural networks is a barrier not just to adoption in applications such as medical diagnosis, where interpretability is essential, but also impedes diagnosis of under performing models. The task of diagnosing or explaining DL models requires the computation of additional artifacts, such as activation values and gradients. These artifacts are large in volume, and their computation, storage, and querying raise significant data management challenges. In this paper, we articulate DL diagnosis as a data management problem, and we propose a general, yet representative, set of queries to evaluate systems that strive to support this new workload. We further develop a novel data sampling technique that produce approximate but accurate results for these model debugging queries. Our sampling technique utilizes the lower dimension representation learned by the DL model and focuses on model decision boundaries for the data in this lower dimensional space. We evaluate our techniques on one standard computer vision and one scientific data set and demonstrate that our sampling technique outperforms a variety of state-of-the-art alternatives in terms of query accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源