论文标题

对具有非多项式非线性术语的系统的非侵入模型降低的运算符推断

Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms

论文作者

Benner, Peter, Goyal, Pawan, Kramer, Boris, Peherstorfer, Benjamin, Willcox, Karen

论文摘要

这项工作提出了一种非侵入模型还原方法,以学习具有空间局部且以分析形式给出的非多项式非线性项的动力学系统的低维模型。与侵入性的最先进模型减少方法相反,因此需要对管理方程式以及离散动态系统的完整模型的操作员充分了解,该建议的方法仅需要分析形式的非分解术语,并从快照中了解潜在的黑盒全盒全模型溶剂剂的快照。该方法通过最小二乘问题学习了线性和多项式非线性动力学的运算符,其中给定的非多项式项在右侧合并。最小二乘问题是线性的,因此可以在实践中有效地解决。提出的方法是在由部分微分方程控制的三个问题上证明的,即扩散反应Chafee-Infante模型,一个用于反应性流动的管状反应器模型以及描述化学分离过程的批处理染色体模型。数值结果提供了证据表明,所提出的方法学习了减少的模型,这些模型可以达到可比精度,因为使用最先进的侵入性模型还原方法构建的模型需要完全了解管理方程。

This work presents a non-intrusive model reduction method to learn low-dimensional models of dynamical systems with non-polynomial nonlinear terms that are spatially local and that are given in analytic form. In contrast to state-of-the-art model reduction methods that are intrusive and thus require full knowledge of the governing equations and the operators of a full model of the discretized dynamical system, the proposed approach requires only the non-polynomial terms in analytic form and learns the rest of the dynamics from snapshots computed with a potentially black-box full-model solver. The proposed method learns operators for the linear and polynomially nonlinear dynamics via a least-squares problem, where the given non-polynomial terms are incorporated in the right-hand side. The least-squares problem is linear and thus can be solved efficiently in practice. The proposed method is demonstrated on three problems governed by partial differential equations, namely the diffusion-reaction Chafee-Infante model, a tubular reactor model for reactive flows, and a batch-chromatography model that describes a chemical separation process. The numerical results provide evidence that the proposed approach learns reduced models that achieve comparable accuracy as models constructed with state-of-the-art intrusive model reduction methods that require full knowledge of the governing equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源