论文标题

边界域积分方程的一个新家族,用于与$ h^{ - 1}( - ω)$ source on Lipschitz域中的不均匀介质中扩散方程的问题

A New Family of Boundary-Domain Integral Equations for the Dirichlet Problem of the Diffusion Equation in Inhomogeneous Media with $H^{-1}(Ω)$ Source Term on Lipschitz Domains

论文作者

Fresneda-Portillo, C., Woldemicheal, Z. W.

论文摘要

非苯二烯介质中扩散方程的内部差异边界值问题将减少为使用(Fresneda-Portillo,2019)获得的边界域积分方程(BDIE)系统,与(Chkadua等人2009年)不同。 We further extend the results obtained in (Fresneda-Portillo, 2019) for the mixed problem in a smooth domain with $L^{2}(Ω)$ right hand side to Lipschitz domains and source term $f$ in the Sobolev space $H^{-1}(Ω)$, where neither the classical nor the canonical co-normal derivatives are well defined. BDIE系统与原始BVP之间的等效性与在适当的Sobolev空间中的解决性和解决方案唯一性一起证明了。

The interior Dirichlet boundary value problem for the diffusion equation in non-homogeneous media is reduced to a system of Boundary-Domain Integral Equations (BDIEs) employing the parametrix obtained in (Fresneda-Portillo, 2019) different from (Chkadua et. al 2009). We further extend the results obtained in (Fresneda-Portillo, 2019) for the mixed problem in a smooth domain with $L^{2}(Ω)$ right hand side to Lipschitz domains and source term $f$ in the Sobolev space $H^{-1}(Ω)$, where neither the classical nor the canonical co-normal derivatives are well defined. Equivalence between the system of BDIEs and the original BVP is proved along with their solvability and solution uniqueness in appropriate Sobolev spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源