论文标题

对基于序列的步态识别的时间稀疏对抗攻击

Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition

论文作者

He, Ziwen, Wang, Wei, Dong, Jing, Tan, Tieniu

论文摘要

步态识别因其在长途人类身份方面的优势而广泛用于社会保障应用中。最近,通过学习丰富的时间和空间信息,基于序列的方法获得了很高的精度。但是,在对抗性攻击下的鲁棒性尚未清楚地探索。在本文中,我们证明了最先进的步态识别模型容易受到此类攻击的影响。为此,我们提出了一种新型的时间稀疏对抗攻击方法。与以前的添加噪声模型不同,这些模型在原始样本上增加了扰动,我们采用基于生成对抗网络的架构来生成对抗性高质量的步态剪影或视频帧。此外,通过稀疏地替代或插入一些对抗步态轮廓,该提出的方法可确保其不可信性并取得了很高的攻击成功率。实验结果表明,如果仅攻击一四分之一的帧,则目标模型的准确性会大大下降。

Gait recognition is widely used in social security applications due to its advantages in long-distance human identification. Recently, sequence-based methods have achieved high accuracy by learning abundant temporal and spatial information. However, their robustness under adversarial attacks has not been clearly explored. In this paper, we demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks. To this end, we propose a novel temporal sparse adversarial attack method. Different from previous additive noise models which add perturbations on original samples, we employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames. Moreover, by sparsely substituting or inserting a few adversarial gait silhouettes, the proposed method ensures its imperceptibility and achieves a high attack success rate. The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源