论文标题
分级模块的分级布尔巴基理想
Graded Bourbaki ideals of graded modules
论文作者
论文摘要
在本文中,我们研究了分级的布尔巴基理想。众所周知的事实是,对于Noetherian正常域上的无扭转模块,存在Bourbaki序列。我们根据某些附着的矩阵给出标准,以诱导模块的同态同态。特别注意分级布尔巴基序列。在本文的第二部分中,我们将这些结果应用于残基类场的Koszul周期,并明确确定特定的布尔巴基理想。在特殊情况下,我们还获得了Koszul循环的Rees代数的结构与其Bourbaki理想的Rees代数之间的关系。
In this paper we study graded Bourbaki ideals. It is a well-known fact that for torsionfree modules over Noetherian normal domains, Bourbaki sequences exist. We give criteria in terms of certain attached matrices for a homomorphism of modules to induce a Bourbaki sequence. Special attention is given to graded Bourbaki sequences. In the second part of the paper, we apply these results to the Koszul cycles of the residue class field and determine particular Bourbaki ideals explicitly. We also obtain in a special case the relationship between the structure of the Rees algebra of a Koszul cycle and the Rees algebra of its Bourbaki ideal.