论文标题
肮脏的高阶狄拉克半学:量子临界和宽大的对应关系
Dirty higher-order Dirac semimetal: Quantum criticality and bulk-boundary correspondence
论文作者
论文摘要
我们分析了时间逆转($ {\ MATHCAL T} $)和格子的稳定性四维($ c_4 $)对称性,破坏三维高级拓扑(热)DIRAC半仪表(DSMS)和相关的一维铰链模式,在随机点类似点类似的情况下。互补的真实空间数值和动量空间重新归一化组(RG)分析表明,HOTDSM虽然是足够弱疾病的物质稳定阶段,但仍经历了连续的量子相变为有限疾病的琐碎金属。但是,相应的临界指数(从状态密度的比例获得的数值获得)非常接近于肮脏的DSM中发现的临界指数,但另一方面,它保留了$ {\ Mathcal t} $和$ c_4 $ symmetries,并支持两个Fermi ARC表面状态。该观察结果表明在整个肮脏的DSM家族中,出现的\ emph {superuniversality}(对对称性不敏感),也通过前阶RG分析预测。作为庞大的对应关系的直接结果,具有开放边界的系统中的铰链模式随机性的增加而逐渐消失,并完全溶解在强大障碍的微不足道的金属相中。
We analyze the stability of time-reversal (${\mathcal T}$) and lattice four-fold ($C_4$) symmetry breaking three-dimensional higher-order topological (HOT) Dirac semimetals (DSMs) and the associated one-dimensional hinge modes in the presence of random pointlike charge impurities. Complementary real space numerical and momentum space renormalization group (RG) analyses suggest that a HOTDSM, while being a stable phase of matter for sufficiently weak disorder, undergoes a continuous quantum phase transition into a trivial metal at finite disorder. However, the corresponding critical exponents (numerically obtained from the scaling of the density of states) are extremely close to the ones found in a dirty, but first-order DSM that on the other hand preserves ${\mathcal T}$ and $C_4$ symmetries, and support two Fermi arc surface states. This observation suggests an emergent \emph{superuniversality} (insensitive to symmetries) in the entire family of dirty DSMs, as also predicted by a leading-order RG analysis. As a direct consequence of the bulk-boundary correspondence, the hinge modes in a system with open boundaries gradually fade away with increasing randomness, and completely dissolve in the trivial metallic phase at strong disorder.