论文标题
学习公平感知的关系结构
Learning Fairness-aware Relational Structures
论文作者
论文摘要
有效避免偏见和歧视的公平机器学习模型的发展是一个重要的问题,近年来引起了人们的关注。在特征和变量之间编码复杂的关系依赖性的必要性需要开发公平但表现力的关系模型。在这项工作中,我们介绍了Fair-A3SL,这是一种用于学习关系结构的公平感知结构学习算法,该算法结合了公平措施,同时学习关系图形模型结构。我们的方法多才多艺,能够编码广泛的公平指标,例如统计奇偶差异,高估,均衡的几率和均等机会,包括最近提出的关系公平度量。尽管现有方法在预测后采用了预定的模型结构采取公平措施,但Fair-A3SL直接学习结构,同时优化公平措施,因此能够消除模型中的任何结构偏见。与代表三种不同的建模场景的数据集相比,我们证明了我们学到的模型结构的有效性:i)一个关系数据集,ii)累犯预测数据集广泛用于研究歧视和研究歧视,以及iii III)推荐系统数据集。我们的结果表明,Fair-A3SL可以学习能够做出准确预测的公平但可解释和表现力的结构。
The development of fair machine learning models that effectively avert bias and discrimination is an important problem that has garnered attention in recent years. The necessity of encoding complex relational dependencies among the features and variables for competent predictions require the development of fair, yet expressive relational models. In this work, we introduce Fair-A3SL, a fairness-aware structure learning algorithm for learning relational structures, which incorporates fairness measures while learning relational graphical model structures. Our approach is versatile in being able to encode a wide range of fairness metrics such as statistical parity difference, overestimation, equalized odds, and equal opportunity, including recently proposed relational fairness measures. While existing approaches employ the fairness measures on pre-determined model structures post prediction, Fair-A3SL directly learns the structure while optimizing for the fairness measures and hence is able to remove any structural bias in the model. We demonstrate the effectiveness of our learned model structures when compared with the state-of-the-art fairness models quantitatively and qualitatively on datasets representing three different modeling scenarios: i) a relational dataset, ii) a recidivism prediction dataset widely used in studying discrimination, and iii) a recommender systems dataset. Our results show that Fair-A3SL can learn fair, yet interpretable and expressive structures capable of making accurate predictions.