论文标题
Feynman Green的Hadamard参数是五维带电标量场的功能
Hadamard parametrix of the Feynman Green's function of a five-dimensional charged scalar field
论文作者
论文摘要
Hadamard参数是Feynman Green在弯曲的时空背景上量子场功能的短距离奇异性结构的表示。减去这些不同的术语使Feynman Green的功能正常,并实现了可观察到的重新归一化期望值的计算。我们研究了五个时空维度的带电,巨大的复杂标量场的Hadamard参数。即使在Minkowski时空时,也无法以封闭形式为带电标量字段编写Feynman Green的功能。因此,我们为Hadamard参数中出现的饼干提供了协变量的泰勒序列膨胀。在一般的时空背景下,我们将扩展系数明确指出计算重新归一化的标量电流所需的顺序。随着膨胀量的增加,这些系数变得越来越冗长,因此我们仅在Minkowski时空计算重新归一化的应力能量张量所需的更高阶段。
The Hadamard parametrix is a representation of the short-distance singularity structure of the Feynman Green's function for a quantum field on a curved space-time background. Subtracting these divergent terms regularizes the Feynman Green's function and enables the computation of renormalized expectation values of observables. We study the Hadamard parametrix for a charged, massive, complex scalar field in five space-time dimensions. Even in Minkowski space-time, it is not possible to write the Feynman Green's function for a charged scalar field exactly in closed form. We therefore present covariant Taylor series expansions for the biscalars arising in the Hadamard parametrix. On a general space-time background, we explicitly state the expansion coefficients up to the order required for the computation of the renormalized scalar field current. These coefficients become increasingly lengthy as the order of the expansion increases, so we give the higher-order terms required for the calculation of the renormalized stress-energy tensor in Minkowski space-time only.