论文标题

在Runge近似和Lipschitz稳定性上,有限维施罗丁逆问题

On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem

论文作者

Rüland, Angkana, Sincich, Eva

论文摘要

在本说明中,我们通过使用定量runge近似结果来抑制Schrödinger操作员具有有限维电势的逆问题的Lipschitz稳定性。这提供了Kohn和Vogelius在COMM中的论证的Schrödinger版本的量化。纯应用。数学。 (1985年),并提出了Alessandrini,de Hoop,Gaburro和Sincich在渐近分析中考虑的策略的细微变体(2018),这在更普通运营商的背景下也可能很有用。

In this note we reprove the Lipschitz stability for the inverse problem for the Schrödinger operator with finite-dimensional potentials by using quantitative Runge approximation results. This provides a quantification of the Schrödinger version of the argument from Kohn and Vogelius in Comm. Pure Appl. Math. (1985) and presents a slight variant of the strategy considered by Alessandrini, de Hoop, Gaburro and Sincich in Asymptotic Analysis (2018) which may prove useful also in the context of more general operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源