论文标题
在Runge近似和Lipschitz稳定性上,有限维施罗丁逆问题
On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem
论文作者
论文摘要
在本说明中,我们通过使用定量runge近似结果来抑制Schrödinger操作员具有有限维电势的逆问题的Lipschitz稳定性。这提供了Kohn和Vogelius在COMM中的论证的Schrödinger版本的量化。纯应用。数学。 (1985年),并提出了Alessandrini,de Hoop,Gaburro和Sincich在渐近分析中考虑的策略的细微变体(2018),这在更普通运营商的背景下也可能很有用。
In this note we reprove the Lipschitz stability for the inverse problem for the Schrödinger operator with finite-dimensional potentials by using quantitative Runge approximation results. This provides a quantification of the Schrödinger version of the argument from Kohn and Vogelius in Comm. Pure Appl. Math. (1985) and presents a slight variant of the strategy considered by Alessandrini, de Hoop, Gaburro and Sincich in Asymptotic Analysis (2018) which may prove useful also in the context of more general operators.