论文标题
有效地从高斯过程后代采样功能
Efficiently Sampling Functions from Gaussian Process Posteriors
论文作者
论文摘要
高斯流程是许多现实世界建模问题的黄金标准,尤其是在模型的成功取决于其忠实地代表预测不确定性的能力的情况下。这些问题通常作为较大框架的一部分存在,其中最终通过整合后验分布来定义了兴趣的数量。这些数量通常是棘手的,激发了蒙特卡洛方法的使用。尽管在将高斯流程扩展到大型训练集方面取得了长足的进步,但用于准确从其后分布中产生抽签的方法仍在测试位置的数量中以立方体扩展。我们确定了高斯过程的分解,该过程自然可以通过将先验与数据分开,从而自然地将自己赋予了可扩展的采样。在此分解的基础上,我们提出了一种易于使用和通用的方法,用于快速后取样,该方法无缝配对稀疏近似值,以在训练和测试时提供可伸缩性。在一系列旨在测试竞争抽样方案的统计属性和实践分析的实验中,我们证明了如何以通常成本的一小部分来准确地代表高斯过程后代。
Gaussian processes are the gold standard for many real-world modeling problems, especially in cases where a model's success hinges upon its ability to faithfully represent predictive uncertainty. These problems typically exist as parts of larger frameworks, wherein quantities of interest are ultimately defined by integrating over posterior distributions. These quantities are frequently intractable, motivating the use of Monte Carlo methods. Despite substantial progress in scaling up Gaussian processes to large training sets, methods for accurately generating draws from their posterior distributions still scale cubically in the number of test locations. We identify a decomposition of Gaussian processes that naturally lends itself to scalable sampling by separating out the prior from the data. Building off of this factorization, we propose an easy-to-use and general-purpose approach for fast posterior sampling, which seamlessly pairs with sparse approximations to afford scalability both during training and at test time. In a series of experiments designed to test competing sampling schemes' statistical properties and practical ramifications, we demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.