论文标题
深层多种族贴片聚合网络,用于面部表达识别
Deep Multi-Facial Patches Aggregation Network For Facial Expression Recognition
论文作者
论文摘要
在本文中,我们提出了一种基于深度多种族斑块聚合网络的面部表情识别方法(FER)的方法。使用深层网络从面部斑块中学到了深层特征,并在一个深层体系结构中汇总进行表达分类。几个问题可能会影响基于深度学习的FER方法的性能,尤其是现有的FER数据集的较小尺寸,这可能不足以训练大型深度学习网络。此外,收集和注释大量面部图像是非常耗时的。为此,我们提出了两种数据增强技术,以扩大标有标记的培训数据集的面部表达生成。我们在三个FER数据集上评估了所提出的框架。结果表明,当对模型的图像对同一数据集的图像进行训练和测试时,所提出的方法可以实现最先进的深度学习方法的性能。此外,提出的数据增强技术提高了表达识别率,因此可以成为使用小数据集训练深度学习模型的解决方案。测试数据集偏差时,准确性会大大降低。
In this paper, we propose an approach for Facial Expressions Recognition (FER) based on a deep multi-facial patches aggregation network. Deep features are learned from facial patches using deep sub-networks and aggregated within one deep architecture for expression classification . Several problems may affect the performance of deep-learning based FER approaches, in particular, the small size of existing FER datasets which might not be sufficient to train large deep learning networks. Moreover, it is extremely time-consuming to collect and annotate a large number of facial images. To account for this, we propose two data augmentation techniques for facial expression generation to expand FER labeled training datasets. We evaluate the proposed framework on three FER datasets. Results show that the proposed approach achieves state-of-art FER deep learning approaches performance when the model is trained and tested on images from the same dataset. Moreover, the proposed data augmentation techniques improve the expression recognition rate, and thus can be a solution for training deep learning FER models using small datasets. The accuracy degrades significantly when testing for dataset bias.