论文标题
红色超级巨人V602 Carinae的VLTI-PIONIER成像
VLTI-PIONIER imaging of the red supergiant V602 Carinae
论文作者
论文摘要
语境。红色超巨星具有表面特征和扩展的分子大气。光球对流可能是外部大气层悬浮的关键因素。但是,造成的机制仍然知之甚少。目标。我们对V602 Carinae(V602 CAR)的恒星表面成像,以限制表面特征和扩展大气层的形态和对比度。方法。我们在2016年5月至2016年7月以及2019年4月和2019年4月和不同的望远镜配置之间观察到了具有非常大的望远镜干涉仪(VLTI)先锋仪器(1.53-1.78 $ \MATHRMμ$)的V602汽车。我们使用结构相似性索引将图像重建与3D辐射流动力学(RHD)CO $^5 $ BOLD模拟的81个时间快照进行了比较。结果。干涉数据与角直径为4.4 $ \ pm $ 0.2 MAS的总体球盘和扩展的分子层兼容。在2016年,重建的图像揭示了朝向光电表面北部边缘的明亮弧形特征。在2019年,在不同的方向上看到了类似弧形的特征,并且在相反的一侧检测到了新的发射峰。重建的表面图像的对比分别为11%$ \ pm $ 2%和9%$ \ pm $ \ pm $ 2%,分别为2016年和2019年。这两个图像的形态和对比与我们实现的空间分辨率和动态范围内的3D RHD模拟一致。延长的分子层占总通量的10--13%,角直径为6--8 mas。它存在于重建图像中,但在重建的图像中尚不清楚,因为它接近所达到的动态范围的限制。 3D RHD模拟不会再现分子层的存在。结论...
Context. Red supergiant stars possess surface features and extended molecular atmospheres. Photospheric convection may be a crucial factor of the levitation of the outer atmospheric layers. However, the mechanism responsible is still poorly understood. Aims. We image the stellar surface of V602 Carinae (V602 Car) to constrain the morphology and contrast of the surface features and of the extended atmospheric layers. Methods. We observed V602 Car with the Very Large Telescope Interferometer (VLTI) PIONIER instrument (1.53-1.78 $\mathrmμ$m) between May and July 2016, and April and July 2019 with different telescope configurations. We compared the image reconstructions with 81 temporal snapshots of 3D radiative-hydrodynamics (RHD) CO$^5$BOLD simulations in terms of contrast and morphology, using the Structural Similarity Index. Results. The interferometric data are compatible with an overall spherical disk of angular diameter 4.4$\pm$0.2 mas, and an extended molecular layer. In 2016, the reconstructed image reveals a bright arc-like feature toward the northern rim of the photospheric surface. In 2019, an arc-like feature is seen at a different orientation and a new peak of emission is detected on the opposite side. The contrasts of the reconstructed surface images are 11%$\pm$2% and 9%$\pm$2% for 2016 and 2019, respectively. The morphology and contrast of the two images are consistent with 3D RHD simulations, within our achieved spatial resolution and dynamic range. The extended molecular layer contributes 10--13% of the total flux with an angular diameter of 6--8 mas. It is present but not clearly visible in the reconstructed images because it is close to the limits of the achieved dynamic range. The presence of the molecular layer is not reproduced by the 3D RHD simulations. Conclusions...