论文标题

三个步骤混合在高立方体上进行一般随机步行的混合

Three steps mixing for general random walks on the hypercube at criticality

论文作者

Collevecchio, Andrea, Griffiths, Robert

论文摘要

我们在$ n $ hypercube上介绍了一般的随机步行类,在混合时间进行研究截止,并为过渡概率提供了几种类型的表示。我们观察到,对于具有远距离的这些过程的子类(即非本地),存在范围的临界值,该范围允许在最多三个步骤中进行“几乎完美”的混合。换句话说,三个步骤过渡与固定分布之间的总变化距离以$ n $的几何降低,这是超立方体的尺寸。在某些情况下,步行几乎完美地分为两个步骤。请注意,Diaconis和Shahshahani(1986)中的众所周知的结果(定理1)表明,在Abelian群体(例如HyperCube)上没有随机步行,它可以完全在两个步骤中完美混合。

We introduce a general class of random walks on the $N$-hypercube, study cut-off for the mixing time, and provide several types of representation for the transition probabilities. We observe that for a sub-class of these processes with long range (i.e. non-local) there exists a critical value of the range that allows an "almost-perfect" mixing in at most three steps. In other words, the total variation distance between the three steps transition and the stationary distribution decreases geometrically in $N$, which is the dimension of the hypercube. In some cases, the walk mixes almost-perfectly in exactly two steps. Notice that a well-known result (Theorem 1 in Diaconis and Shahshahani (1986)) shows that there exist no random walk on Abelian groups (such as the hypercube) which mixes perfectly in exactly two steps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源