论文标题
单壳单壳DW-MRI的多组织限制球形反卷积的深度学习估计
Deep Learning Estimation of Multi-Tissue Constrained Spherical Deconvolution with Limited Single Shell DW-MRI
论文作者
论文摘要
扩散加权的磁共振成像(DW-MRI)是估计人体大脑体内神经途径的素内微体系结构和重建的唯一非侵入性方法。随着加速MRI采集技术的改进,利用多个扩散敏化的DW-MRI方案已获得流行。使用多壳数据的白质微观结构重建的一种众所周知的高级方法是多issue限制的球形反卷积(MT-CSD)。 MT-CSD基本上改善了传统的单壳版本(CSD)的传统单壳形式的分辨率。本文中,我们探讨了在单个外壳数据上使用深度学习的可能性(使用Human Connectome Project(HCP)的B = 1000 s/mm2),使用完整的三个壳数据(B = 1000,2000,HCP中的3000 S/MM2)估算了由8阶MT-CSD捕获的信息内容。简而言之,我们检查了两个网络体系结构:1。)完全连接的密集层的顺序网络,中间(resdnn)一个残留块,2。)基于斑块的卷积神经网络,带有残留块(Racknn)。对于这两个网络,使用修改的损耗函数,将额外的输出块用于估计体素分数。将每种方法与在HCP中使用MT-CSD使用MT-CSD的基线进行了比较,分为5个训练,2个验证和8个测试受试者,共670万素素。与MT-CST的基础真相相比,可以以高相关性(0.77 vs 0.74和0.65)回收纤维方向分布函数(FODF),MT-CST的基础真相是从多壳DW-MRI习得得出的。源代码和模型已公开可用。
Diffusion-weighted magnetic resonance imaging (DW-MRI) is the only non-invasive approach for estimation of intra-voxel tissue microarchitecture and reconstruction of in vivo neural pathways for the human brain. With improvement in accelerated MRI acquisition technologies, DW-MRI protocols that make use of multiple levels of diffusion sensitization have gained popularity. A well-known advanced method for reconstruction of white matter microstructure that uses multi-shell data is multi-tissue constrained spherical deconvolution (MT-CSD). MT-CSD substantially improves the resolution of intra-voxel structure over the traditional single shell version, constrained spherical deconvolution (CSD). Herein, we explore the possibility of using deep learning on single shell data (using the b=1000 s/mm2 from the Human Connectome Project (HCP)) to estimate the information content captured by 8th order MT-CSD using the full three shell data (b=1000, 2000, and 3000 s/mm2 from HCP). Briefly, we examine two network architectures: 1.) Sequential network of fully connected dense layers with a residual block in the middle (ResDNN), 2.) Patch based convolutional neural network with a residual block (ResCNN). For both networks an additional output block for estimation of voxel fraction was used with a modified loss function. Each approach was compared against the baseline of using MT-CSD on all data on 15 subjects from the HCP divided into 5 training, 2 validation, and 8 testing subjects with a total of 6.7 million voxels. The fiber orientation distribution function (fODF) can be recovered with high correlation (0.77 vs 0.74 and 0.65) as compared to the ground truth of MT-CST, which was derived from the multi-shell DW-MRI acquisitions. Source code and models have been made publicly available.