论文标题
非相制多载波MU-SIMO系统的深能自动编码器
Deep Energy Autoencoder for Noncoherent Multicarrier MU-SIMO Systems
论文作者
论文摘要
我们在褪色通道下提出了一个新型的深层能源自动编码器(EA),用于非合并多载波多载波多载器多载器单输入多次输入(MU-SIMO)系统。特别是,首先提出了基于多载波SIMO框架的单用户非Conerent EA基(NC-EA)系统,其中发射器和接收器均由深神经网络(DNNS)表示,称为EA的编码器和解码器。与现有系统不同,NC-EA的解码器仅以所有接收天线的能量馈送,而其编码器则输出一个实值的向量,其元素代表子载波功率水平。然后,使用NC-AE,我们基于多载波Musimo框架开发了上行链路和下行链路NC-EA多访问(NC-AEAMA)方案的两个新型DNN结构。请注意,NC-AEAMA允许多个用户共享相同的子载波,因此比非合法正交对应物获得更高的性能提高。通过适当的培训,建议的NC-EA和NC-AEAMA可以在没有任何通道状态信息估计的情况下有效地恢复传输数据。模拟结果清楚地表明了我们方案在可靠性,灵活性和复杂性方面的优越性,而不是基线方案。
We propose a novel deep energy autoencoder (EA) for noncoherent multicarrier multiuser single-input multipleoutput (MU-SIMO) systems under fading channels. In particular, a single-user noncoherent EA-based (NC-EA) system, based on the multicarrier SIMO framework, is first proposed, where both the transmitter and receiver are represented by deep neural networks (DNNs), known as the encoder and decoder of an EA. Unlike existing systems, the decoder of the NC-EA is fed only with the energy combined from all receive antennas, while its encoder outputs a real-valued vector whose elements stand for the subcarrier power levels. Using the NC-EA, we then develop two novel DNN structures for both uplink and downlink NC-EA multiple access (NC-EAMA) schemes, based on the multicarrier MUSIMO framework. Note that NC-EAMA allows multiple users to share the same sub-carriers, thus enables to achieve higher performance gains than noncoherent orthogonal counterparts. By properly training, the proposed NC-EA and NC-EAMA can efficiently recover the transmitted data without any channel state information estimation. Simulation results clearly show the superiority of our schemes in terms of reliability, flexibility and complexity over baseline schemes.