论文标题

无监督的多级领域适应:理论,算法和实践

Unsupervised Multi-Class Domain Adaptation: Theory, Algorithms, and Practice

论文作者

Zhang, Yabin, Deng, Bin, Tang, Hui, Zhang, Lei, Jia, Kui

论文摘要

在本文中,我们研究了无监督的多级领域适应性(多级UDA)的形式主义,该领域适应(多级UDA)是最近几种算法的基础,这些算法仅在经验上是在经验上进行学习目标。多级评分分歧(MCSD)差异是通过汇总多级分类中的绝对边缘违规而提出的,并且该提出的MCSD能够充分表征任何一对多级分数得分假设之间的关系。通过使用MCSD作为域距离的度量,我们为多级UDA开发了一个新的域适应性;它的数据依赖性(可能是近似正确的界限)也是开发出来的,自然提出了对抗性学习目标,以使跨源和目标域之间的条件特征分布对齐。因此,开发了多级领域 - 交流学习网络(McDalnets)的算法框架,并且通过替代学习目标与一些最近流行的方法相吻合或类似于一些最近流行的方法,因此(部分)(部分)(部分)强调其实际有效性。基于我们对多级UDA的相同理论,我们还引入了一种新的域对称网络(Symmnets)算法,该算法由一种新颖的域名混淆和歧视的对抗性策略所介绍。 Symmnets提供了简单的扩展,这些扩展在封闭,部分或开放式UDA的问题设置下同样可以工作。我们进行了仔细的经验研究,以比较麦克达内特的不同算法和我们新引入的符号。实验验证了我们的理论分析,并显示了我们提出的符号的功效。此外,我们已公开提供实施代码。

In this paper, we study the formalism of unsupervised multi-class domain adaptation (multi-class UDA), which underlies a few recent algorithms whose learning objectives are only motivated empirically. Multi-Class Scoring Disagreement (MCSD) divergence is presented by aggregating the absolute margin violations in multi-class classification, and this proposed MCSD is able to fully characterize the relations between any pair of multi-class scoring hypotheses. By using MCSD as a measure of domain distance, we develop a new domain adaptation bound for multi-class UDA; its data-dependent, probably approximately correct bound is also developed that naturally suggests adversarial learning objectives to align conditional feature distributions across source and target domains. Consequently, an algorithmic framework of Multi-class Domain-adversarial learning Networks (McDalNets) is developed, and its different instantiations via surrogate learning objectives either coincide with or resemble a few recently popular methods, thus (partially) underscoring their practical effectiveness. Based on our identical theory for multi-class UDA, we also introduce a new algorithm of Domain-Symmetric Networks (SymmNets), which is featured by a novel adversarial strategy of domain confusion and discrimination. SymmNets affords simple extensions that work equally well under the problem settings of either closed set, partial, or open set UDA. We conduct careful empirical studies to compare different algorithms of McDalNets and our newly introduced SymmNets. Experiments verify our theoretical analysis and show the efficacy of our proposed SymmNets. In addition, we have made our implementation code publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源