论文标题
顶点分裂,一致的实现和括号三角形的全球刚度
Vertex Splitting, Coincident Realisations and Global Rigidity of Braced Triangulations
论文作者
论文摘要
我们简短地证明了约旦和Tanigawa的结果,即4个连接的图具有一个跨度的平面三角剖分作为适当的子图,在R^3中通常是全球刚性的。我们的证明是基于一种新的足够条件,用于所谓的顶点分裂操作,以保留R^d中的通用全球刚度。
We give a short proof of a result of Jordan and Tanigawa that a 4-connected graph which has a spanning planar triangulation as a proper subgraph is generically globally rigid in R^3. Our proof is based on a new sufficient condition for the so called vertex splitting operation to preserve generic global rigidity in R^d.