论文标题
通过倾斜分子$π$ - 轨道的巨型各向异性磁化
Giant anisotropic magnetoresistance through a tilted molecular $π$-orbital
论文作者
论文摘要
源自自旋轨道耦合(SOC)的各向异性磁阻(AMR)是磁性系统中电阻对自旋磁化方向的敏感性。尽管该现象已经在几个纳米级连接处进行了实验报告,但对其背后的物理机制的清晰了解仍然难以捉摸。在这里,我们讨论了一个基于轨道对称考虑因素的新颖概念,以达到一类$π$ type的分子自旋valve的大量AMR,最高为95 \%。它在连接的两个单子镍电极之间相连的苯 - 二硫代酯分子上进行了说明。我们发现,SOC通过Ferromagnet-Molet-Molet-Moles-Moles-Moles-Moles-Mole-Ectuction通道的自旋事件打开,该传导通道被没有SOC的对称性完全阻塞。重要的是,由于分子轨道的倾斜,主和新运输通道之间的相互作用很大程度上取决于镍电极中的磁化方向。此外,由于多波段量子干扰出现在镍电极的带边缘,在费米能量上方观察到透射液。总的来说,这些效果导致费米级别的重要AMR,甚至改变了符号。我们的理论理解是根据\ textit {ab intib}计算和简化的分析模型证实的,揭示了在基于分子的旋转器件中有效实现AMR的一般原理。
Anisotropic magnetoresistance (AMR), originating from spin-orbit coupling (SOC), is the sensitivity of the electrical resistance in magnetic systems to the direction of spin magnetization. Although this phenomenon has been experimentally reported for several nanoscale junctions, a clear understanding of the physical mechanism behind it is still elusive. Here we discuss a novel concept based on orbital symmetry considerations to attain a significant AMR of up to 95\% for a broad class of $π$-type molecular spin-valves. It is illustrated at the benzene-dithiolate molecule connected between two monoatomic nickel electrodes. We find that SOC opens, via spin-flip events at the ferromagnet-molecule interface, a new conduction channel, which is fully blocked by symmetry without SOC. Importantly, the interplay between main and new transport channels turns out to depend strongly on the magnetization direction in the nickel electrodes due to the tilting of molecular orbital. Moreover, due to multi-band quantum interference, appearing at the band edge of nickel electrodes, a transmission drop is observed just above the Fermi energy. Altogether, these effects lead to a significant AMR around the Fermi level, which even changes a sign. Our theoretical understanding, corroborated in terms of \textit{ab initio} calculations and simplified analytical models, reveals the general principles for an efficient realization of AMR in molecule-based spintronic devices.