论文标题

具有关键终点的全息QCD模型的纠缠特性

The entanglement properties of holographic QCD model with a critical end point

论文作者

Li, Zhibin, Xu, Kun, Huang, Mei

论文摘要

我们研究了具有有限的巴里昂密度的临界终点的全息QCD(HQCD)模型的不同纠缠特性。首先,我们考虑了该HQCD模型在球形区域和带状区域中的HQCD模型的全息纠缠熵(HEE),并发现这两个区域中该HQCD模型的HEE都可以反映QCD相变的HEE。更重要的是,尽管两个区域的面积公式和最小面积方程截然不同,但HEE在QCD相图上具有非常相似的行为。因此,我们认为HEE在QCD相图上的行为与子区域的形状无关。但是,众所周知,hee并不是表征热系统不同子区域之间纠缠的数量。因此,我们然后研究不同条形区域中纯化(CMI)的相互信息(MI),有条件的相互信息(CMI)和纠缠(EP)。我们发现,三个纠缠量具有非常相似的行为:它们的值在HADRONIC物质阶段不会发生太大变化,然后随着QGP阶段的$ t $和$ \ m $的增加而迅速上升。在相边界附近,这三个纠缠量在交叉区域中平稳变化,在CEP处连续但不平稳,并在第一期过渡区域显示不连续性行为。所有这些都可以用来区分强耦合物质的不同阶段。

We investigate different entanglement properties of a holographic QCD (hQCD) model with a critical end point at finite baryon density. Firstly we consider the holographic entanglement entropy (HEE) of this hQCD model in a spherical shaped region and a strip shaped region, respectively, and find that the HEE of this hQCD model in both regions can reflect QCD phase transition. What is more is that although the area formulas and minimal area equations of the two regions are quite different, the HEE have very similar behavior on the QCD phase diagram. So we argue that the behavior of HEE on the QCD phase diagram is independent of the shape of subregions. However, as we know that HEE is not a good quantity to characterize the entanglement between different subregions of a thermal system. So we then study the mutual information (MI), conditional mutual information (CMI) and the entanglement of purification (Ep) in different strip shaped regions. We find that the three entanglement quantities have very similar behavior: their values do not change so much in the hadronic matter phase and then rise up quickly with the increase of $T$ and $\m$ in the QGP phase. Near the phase boundary, these three entanglement quantities change smoothly in the crossover region, continuously but not smoothly at CEP and show discontinuity behavior in the first phase transition region. And all of them can be used to distinguish different phases of strongly coupled matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源