论文标题
在网络干预和干预政策增强下的因果推断
Causal Inference under Networked Interference and Intervention Policy Enhancement
论文作者
论文摘要
从随机实验的数据中估算单个治疗效果是因果推断的关键任务。稳定的单位治疗价值假设(SUTVA)通常是在因果推理中进行的。但是,当一个单位上的分配治疗会影响相邻单位的潜在结果时,干扰会引入偏见。这种干扰现象被称为经济学或社会科学的同伴效应的溢出效应。通常,在与互连单元的随机实验或观察性研究中,只能观察干扰的治疗反应。因此,如何估计叠加的因果效应并在干扰存在下恢复个体治疗效应成为因果推论的一项艰巨的任务。在这项工作中,我们研究了使用GNN的一般网络干扰下的因果效应估计,这是捕获图中依赖性的强大工具。在得出因果效应估计器之后,我们进一步研究了在容量约束下对图表的干预政策改进。我们在网络干扰和治疗能力限制下给予政策后悔的界限。此外,还提供了针对基于GNN的因果估计器结合的启发式图结构依赖性误差。
Estimating individual treatment effects from data of randomized experiments is a critical task in causal inference. The Stable Unit Treatment Value Assumption (SUTVA) is usually made in causal inference. However, interference can introduce bias when the assigned treatment on one unit affects the potential outcomes of the neighboring units. This interference phenomenon is known as spillover effect in economics or peer effect in social science. Usually, in randomized experiments or observational studies with interconnected units, one can only observe treatment responses under interference. Hence, how to estimate the superimposed causal effect and recover the individual treatment effect in the presence of interference becomes a challenging task in causal inference. In this work, we study causal effect estimation under general network interference using GNNs, which are powerful tools for capturing the dependency in the graph. After deriving causal effect estimators, we further study intervention policy improvement on the graph under capacity constraint. We give policy regret bounds under network interference and treatment capacity constraint. Furthermore, a heuristic graph structure-dependent error bound for GNN-based causal estimators is provided.