论文标题
连接的谎言组的线性和不变流的周期性轨道
Periodic orbits of Linear and invariant flows on connected Lie groups
论文作者
论文摘要
我们的主要目的是研究真实,连接的谎言组的线性和不变流量的定期轨道。由于每个线性流$φ_T$都有一个衍生$ \ Mathcal {d} $,因此我们表明,$φ_T$的周期性轨道的存在基于派生$ \ Mathcal {D} $的特征值。由此,我们研究了在非2型,半神经谎言组上线性流的周期性轨道,并与线性流的周期性轨道在连接的线性流动,简单地连接,可解决的谎言基团2或3。
Our main is to study periodic orbits of linear and invariant flows on a real, connected Lie group. Since each linear flow $φ_t$ has a derivation associated $\mathcal{D}$, we show that the existence of periodic orbits of $φ_t$ is based on the eigenvalues of the derivation $\mathcal{D}$. From this, we study periodic orbits of a linear flow on noncompact, semisimple Lie groups, and we work with periodic orbits of a linear flow on connected, simply connected, solvable Lie groups of dimension 2 or 3.