论文标题
具有消息重要性的数字数据的存储空间分配策略
Storage Space Allocation Strategy for Digital Data with Message Importance
论文作者
论文摘要
本文主要集中于从消息重要性的角度来看,重建数据在有限的总存储尺寸内追求最小失真时,从消息重要性的角度着重于损失的压缩存储问题。为此,我们通过数据重建中的重要性加权重建误差将此问题转换为优化。基于它,本文通过一种限制性的水进行了一种最佳的分配策略,以在数字数据储存数字数据方面进行最佳分配策略。也就是说,这是一种高效的自适应压缩策略,因为它可以合理地使用所有存储空间。它还表征了相对加权重建误差与可用存储大小之间的权衡。此外,本文还介绍了用户的偏好和数据分发的特殊特征都可以触发小型概况事件方案,在这些事件方案中,只有一小部分数据才能涵盖绝大多数用户的兴趣。无论是出于上述原因之一,具有高度集群消息重要性的数据对压缩存储有益。相反,具有统一信息分布的数据是不可压缩的,这与信息理论一致。
This paper mainly focuses on the problem of lossy compression storage from the perspective of message importance when the reconstructed data pursues the least distortion within limited total storage size. For this purpose, we transform this problem to an optimization by means of the importance-weighted reconstruction error in data reconstruction. Based on it, this paper puts forward an optimal allocation strategy in the storage of digital data by a kind of restrictive water-filling. That is, it is a high efficient adaptive compression strategy since it can make rational use of all the storage space. It also characterizes the trade-off between the relative weighted reconstruction error and the available storage size. Furthermore, this paper also presents that both the users' preferences and the special characteristic of data distribution can trigger the small-probability event scenarios where only a fraction of data can cover the vast majority of users' interests. Whether it is for one of the reasons above, the data with highly clustered message importance is beneficial to compression storage. In contrast, the data with uniform information distribution is incompressible, which is consistent with that in information theory.