论文标题
多极高阶拓扑阶段的纠缠特征
Entanglement Signatures of Multipolar Higher Order Topological Phases
论文作者
论文摘要
我们提出了一个通过宽大的纠缠结构来表征自由屈服或相互作用的高阶拓扑阶段的程序。为此,我们首先将切入的纠缠术剪切到普通的多体基态状态,然后通过将进一步的纠缠削减施加到纠缠汉密尔顿的(假定独特的)汉密尔顿汉密尔顿(Hamiltonian)的基础状态,从而构建了嵌套纠缠汉密尔顿人。我们认为,$ n $ ther订单多极拓扑阶段的特征是其$ n $ th订单的嵌套纠缠汉密尔顿(Hamiltonian)的特征,例如,纠缠频谱中的退化。我们明确计算一组高阶费米和玻色子多极相的嵌套纠缠光谱,并表明我们的方法成功地识别了此类阶段。
We propose a procedure that characterizes free-fermion or interacting multipolar higher-order topological phases via their bulk entanglement structure. To this end, we construct nested entanglement Hamiltonians by first applying an entanglement cut to the ordinary many-body ground state, and then iterating the procedure by applying further entanglement cuts to the (assumed unique) ground state of the entanglement Hamiltonian. We argue that an $n$-th order multipolar topological phase can be characterized by the features of its $n$-th order nested entanglement Hamiltonian e.g., degeneracy in the entanglement spectrum. We explicitly compute nested entanglement spectra for a set of higher-order fermionic and bosonic multipole phases and show that our method successfully identifies such phases.