论文标题
巨大的星球掉期在近距离竞争期间
Giant planet swaps during close stellar encounters
论文作者
论文摘要
太阳系以外的行星系统发现了行星形成的一些宗旨。在难以解释的观察结果中,有一个巨大的行星旋转的系统,例如最近发现的GJ〜3512B行星系统,在该系统中,一个类似木星的行星绕着$ m $ $ $ $ $ $ $ $ $奇怪的轨道。这样的系统无法通过行星形成的核心积聚理论预测。在这里,我们建议一种新颖的机制,其中巨型星球诞生于一个更典型的阳光恒星($ m _ {*,1} $),但随后在与Flyby低质量恒星($ M _ {**,2} $)的动态互动中进行了交换。我们使用$ m _ {*,1} = 1m_ \ odot $和$ m _ {*,2} = 0.1m_ \ odot $进行最新的$ n $体体模拟,以研究这种交互的统计结果,并显示出与低水平相比,同时或者在近距离近距离的情况下,该互动的统计成果是在研究这种互动的统计结果的,而这些交换的范围很高。 星星。我们以数值计算行星交换的横截面,并表明每个行星系统发生这样的事件的概率上限为$γ\ sim 4.4(m _ {\ rm c}/100m_ \ odot) km} \,{\ rm s}^{ - 1})^{5} $ gyr $^{ - 1} $,其中$ a _ {\ rm p} $是Planet Semi-Major Axis,在出生之星附近,$σ$ velocity the velocity the velocity the velocity the velocity of the velocity the velocity of star of star of star of star and $ m _ _ {因此,对于在开放群集和组中出生的恒星来说,这些星球交换可能相对常见,应该在系外行星数据库中观察到,并提供新的途径来创建意外的行星体系结构。
The discovery of planetary systems outside of the solar system has challenged some of the tenets of planetary formation. Among the difficult-to-explain observations, are systems with a giant planet orbiting a very-low mass star, such as the recently discovered GJ~3512b planetary system, where a Jupiter-like planet orbits an $M$-star in a tight and eccentric orbit. Systems such as this one are not predicted by the core accretion theory of planet formation. Here we suggest a novel mechanism, in which the giant planet is born around a more typical Sun-like star ($M_{*,1}$), but is subsequently exchanged during a dynamical interaction with a flyby low-mass star ($M_{*,2}$). We perform state-of-the-art $N$-body simulations with $M_{*,1}=1M_\odot$ and $M_{*,2}=0.1M_\odot$ to study the statistical outcomes of this interaction, and show that exchanges result in high eccentricities for the new orbit around the low-mass star, while about half of the outcomes result in tighter orbits than the planet had around its birth star. We numerically compute the cross section for planet exchange, and show that an upper limit for the probability per planetary system to have undergone such an event is $Γ\sim 4.4(M_{\rm c}/100M_\odot)^{-2}(a_{\rm p}/{\rm AU}) (σ/1\,{\rm km}\,{\rm s}^{-1})^{5}$Gyr$^{-1}$, where $a_{\rm p}$ is the planet semi-major axis around the birth star, $σ$ the velocity dispersion of the star cluster, and $M_{\rm c}$ the total mass of the star cluster. Hence these planet exchanges could be relatively common for stars born in open clusters and groups, should already be observed in the exoplanet database, and provide new avenues to create unexpected planetary architectures.