论文标题

sub-planckian $ ϕ^{2} $通货膨胀在palatini的重力配方中,带有$ r^2 $项

Sub-Planckian $ϕ^{2}$ Inflation in the Palatini Formulation of Gravity with an $R^2$ term

论文作者

Lloyd-Stubbs, Amy, McDonald, John

论文摘要

在带有$ r^{2} $项的palatini重力形式的上下文中,$ ϕ^{2} $势可以与观察到的限制在$ r $上的约束,同时保留了$ n_ {s} $的成功预测。在这里,我们表明palatini $ ϕ^{2} r^2 $通货膨胀模型还可以解决$ ϕ^{2} $混乱通货膨胀的超级planckian Adflaton问题,并且该模型可以与Planck Scale抑制的潜在校正一致。如果$α\ gtrsim 10^{12} $,其中$α$是$ r^2 $项的系数,则在爱因斯坦框架中的充气,$σ$,在整个通货膨胀过程中仍然是sub-planckian。此外,如果$α\ gtrsim 10^{20} $,则在换档对称性的情况下,该模型的预测不受普朗克抑制的潜在校正的影响,如果$α\ gtrsim 10^{32} $,那么Planck-Seplanck-Seplands planck-Sepland plangksplyped的电位校正不影响。 $ r $的值通常很小,$ r \ lyssim 10^{ - 5} $ for $α\ gtrsim 10^{12} $。我们计算最大可能的加热温度,$ t_ {r \; max} $,对应于瞬时重新加热。对于$α\大约10^{32} $,$ t_ {r \; Max} $大约为$ 10^{10} $ GEV,对于较小的$α$,较大的$ t_ {r \; max} $。对于瞬时再加热的情况,我们表明$ n_ {s} $与2018 Planck结果一致,在1- $σ$之内,除了$α\大约10^{32} $ case,它接近2- $σ$下限。通货膨胀后,充气凝结物可能会迅速碎片并形成oscillons。通过发气量重新加热到右撇子中微子很容易导致瞬时再加热。我们确定违反单位性的规模,并表明通常在通货膨胀期间保存单位性。

In the context of the Palatini formalism of gravity with an $R^{2}$ term, a $ϕ^{2}$ potential can be consistent with the observed bound on $r$ whilst retaining the successful prediction for $n_{s}$. Here we show that the Palatini $ϕ^{2} R^2$ inflation model can also solve the super-Planckian inflaton problem of $ϕ^{2}$ chaotic inflation, and that the model can be consistent with Planck scale-suppressed potential corrections. If $α\gtrsim 10^{12}$, where $α$ is the coefficient of the $R^2$ term, the inflaton in the Einstein frame, $σ$, remains sub-Planckian throughout inflation. In addition, if $α\gtrsim 10^{20}$ then the predictions of the model are unaffected by Planck-suppressed potential corrections in the case where there is a broken shift symmetry, and if $α\gtrsim 10^{32}$ then the predictions are unaffected by Planck-suppressed potential corrections in general. The value of $r$ is generally small, with $r \lesssim 10^{-5}$ for $α\gtrsim 10^{12}$. We calculate the maximum possible reheating temperature, $T_{R\;max}$, corresponding to instantaneous reheating. For $α\approx 10^{32}$, $T_{R\; max}$ is approximately $10^{10}$ GeV, with larger values of $T_{R\;max}$ for smaller $α$. For the case of instantaneous reheating, we show that $n_{s}$ is in agreement with the 2018 Planck results to within 1-$σ$, with the exception of the $α\approx 10^{32}$ case, which is close to the 2-$σ$ lower bound. Following inflation, the inflaton condensate is likely to rapidly fragment and form oscillons. Reheating via inflaton decays to right-handed neutrinos can easily result in instantaneous reheating. We determine the scale of unitarity violation and show that, in general, unitarity is conserved during inflation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源