论文标题
比较以多种不含上下文的语言进行连续的字母计数
Comparing consecutive letter counts in multiple context-free languages
论文作者
论文摘要
无上下文的语法无法用自然语言建模跨串行依赖性。为了克服这个问题,Seki等人。引入了一个称为$ M $ - 万月无上下文的语法($ M $ -MCFGS)的概括,该语法涉及$ m $ $ tuplass的字符串。我们表明,$ M $ -MCFGS能够比较最多$ 2M $不同的字母的连续发生数量。特别是,语言$ \ {a_1^{n_1} a_2^{n_2} \ dots a_ {k}^{n_ {2m+1}} \ mid n_1 \ mid n_1 \ geq n_2 \ geq n_2 \ geq \ geq \ geq N_不是$ m $ - 多数上下文。
Context-free grammars are not able to model cross-serial dependencies in natural languages. To overcome this issue, Seki et al. introduced a generalization called $m$-multiple context-free grammars ($m$-MCFGs), which deal with $m$-tuples of strings. We show that $m$-MCFGs are capable of comparing the number of consecutive occurrences of at most $2m$ different letters. In particular, the language $\{a_1^{n_1} a_2^{n_2} \dots a_{k}^{n_{2m+1}} \mid n_1 \geq n_2 \geq \dots \geq n_{2m+1} \geq 0\}$ is $(m+1)$-multiple context-free, but not $m$-multiple context-free.