论文标题

几乎弦图上的次指数参数化算法和内核化

Subexponential parameterized algorithms and kernelization on almost chordal graphs

论文作者

Fomin, Fedor V., Golovach, Petr A.

论文摘要

我们研究了图类和弦链的算法属性,即可以通过在大多数k边缘添加或等效地将最多k的填充图类别添加来将其转换为和弦图。我们发现,在Chordal-ke的图上,k允许的亚指数算法参数化了许多基本棘手的优化问题。我们在Chordal-ke上确定了一大批优化问题,该问题允许使用典型的运行时间2^{o(\ sqrt {k} \ log k)} \ cdot n^{o(1)}。此类问题的示例是找到一组独立的最大重量,找到一个反馈顶点集或最小重量的奇数循环横向,或者找到最大诱导的平面子图的问题。另一方面,我们表明,对于某些基本优化问题,例如找到最佳的图形着色或找到最大的集团,当由k参数化时,在coordal-ke上是fpt,但除非ETH失败,否则在k算法中不接受kibendient。除了亚指数时间算法外,从内核化的角度(带有参数k)的角度,弦核图的类别似乎都具有吸引力。虽然可以证明大多数优化问题的加权变体都不会在弦核图上的k核中允许多项式允许多项式,但这并不排除未加权图的图灵内核化和内核的存在。特别是,我们构建了一个多项式图灵内核,用于在弦琴图上加权集团。对于(未加权)独立集,我们在两个有趣的和弦链的子类上设计多项式内核,即Interval-ke和split-ke图。

We study the algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. We discover that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from Chordal-ke. We identify a large class of optimization problems on Chordal-ke that admit algorithms with the typical running time 2^{O(\sqrt{k}\log k)}\cdot n^{O(1)}. Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal-ke when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of Chordal-ke graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on Chordal-ke graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on Chordal-ke graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of Chordal-ke, namely, Interval-ke and Split-ke graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源