论文标题
通过共同信息神经估计的隐式模型的贝叶斯实验设计
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
论文作者
论文摘要
隐式随机模型,其中数据生成分布是棘手的,但可以采样,在自然科学中无处不在。这些模型通常具有自由参数,需要从科学实验中收集的数据中推断出来。一个基本问题是如何设计实验,以使收集的数据最有用。贝叶斯实验设计领域提倡,理想情况下,我们应该选择最大程度地提高数据和参数之间相互信息(MI)的设计。但是,对于隐式模型,这种方法受到计算后代和最大化MI的高计算成本的严重阻碍,尤其是当我们拥有少数几个设计变量以优化时。在本文中,我们为隐式模型提出了一种新的贝叶斯实验设计方法,该方法利用了神经MI估计的最新进展来处理这些问题。我们表明,训练神经网络以最大化MI的下限,使我们能够共同确定最佳设计和后部。仿真研究表明,这种优雅地将隐式模型的贝叶斯实验设计扩展到更高的设计维度。
Implicit stochastic models, where the data-generation distribution is intractable but sampling is possible, are ubiquitous in the natural sciences. The models typically have free parameters that need to be inferred from data collected in scientific experiments. A fundamental question is how to design the experiments so that the collected data are most useful. The field of Bayesian experimental design advocates that, ideally, we should choose designs that maximise the mutual information (MI) between the data and the parameters. For implicit models, however, this approach is severely hampered by the high computational cost of computing posteriors and maximising MI, in particular when we have more than a handful of design variables to optimise. In this paper, we propose a new approach to Bayesian experimental design for implicit models that leverages recent advances in neural MI estimation to deal with these issues. We show that training a neural network to maximise a lower bound on MI allows us to jointly determine the optimal design and the posterior. Simulation studies illustrate that this gracefully extends Bayesian experimental design for implicit models to higher design dimensions.