论文标题

半参数重采样

Semi-parametric resampling with extremes

论文作者

Opitz, Thomas, Allard, Denis, Mariéthoz, Grégoire

论文摘要

非参数重采样方法(例如直接采样)是模拟新数据集的强大工具,这些数据集保留了重要的数据特征,例如来自观察到的数据集的空间模式,同时仅使用最小的假设。但是,此类方法无法生成超出观察到的数据值范围之外的极端事件。我们在这里建议将来自极值理论的工具用于随机过程,以推断观察到的数据朝向尚未观察到的高分子。首先,原始数据在尾部区域中具有新值,然后将经典的重新采样算法应用于富集数据。在我们标记为“天真重新采样”的第一种富集方法中,我们生成了边缘分布的独立样本,同时保持观察到的数据的等级顺序。我们指出了这种方法围绕最极端值的不准确性,因此开发了第二种方法,该方法适用于许多重复的数据集。它基于通过两个随机独立的成分对极端事件的渐近表示:幅度变量和描述空间变化的轮廓场。为了生成富集的数据,我们固定了幅度变量的回报水平的目标范围,并将限制到该范围的大小重新采样。然后,根据2010年至2016年的每日温度再分析训练数据,我们使用第二种方法来生成法国尚未观察到的热量方案。

Nonparametric resampling methods such as Direct Sampling are powerful tools to simulate new datasets preserving important data features such as spatial patterns from observed datasets while using only minimal assumptions. However, such methods cannot generate extreme events beyond the observed range of data values. We here propose using tools from extreme value theory for stochastic processes to extrapolate observed data towards yet unobserved high quantiles. Original data are first enriched with new values in the tail region, and then classical resampling algorithms are applied to enriched data. In a first approach to enrichment that we label "naive resampling", we generate an independent sample of the marginal distribution while keeping the rank order of the observed data. We point out inaccuracies of this approach around the most extreme values, and therefore develop a second approach that works for datasets with many replicates. It is based on the asymptotic representation of extreme events through two stochastically independent components: a magnitude variable, and a profile field describing spatial variation. To generate enriched data, we fix a target range of return levels of the magnitude variable, and we resample magnitudes constrained to this range. We then use the second approach to generate heatwave scenarios of yet unobserved magnitude over France, based on daily temperature reanalysis training data for the years 2010 to 2016.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源