论文标题

圆盘扭矩在形成共振的行星系统中的作用

The role of disc torques in forming resonant planetary systems

论文作者

Ataiee, S., Kley, W.

论文摘要

对行星迁移建模的最准确方法,因此共振系统的形成是使用流体动力学模拟。通常,用气盘和恒星的力计算出作用在行星上的力(扭矩),而使用压力梯度,恒星和行星的重力计算出气体加速度,忽略了其自身的重力。对于非迁移的忽略椎间盘重力会导致一致的扭矩计算,而对于迁移情况,则不一致。我们的目标是研究这种不一致的扭矩计算会影响两行型系统的最终配置。我们的重点将放在低质量行星上,因为大多数由开普勒调查发现的多人星际系统的质量约为10个地球质量。进行行星盘相互作用的流体动力学模拟,我们测量了各种圆盘质量的非迁移和迁移行星的扭矩,以及有没有考虑盘的自我重力的情况下的密度和温度斜率。使用这些数据,我们找到了一种量化不一致性,在N体代码中使用它的关系,并执行扩展的参数研究,以建模具有不同行星质量比和圆盘表面密度的行星系统的迁移,以研究扭矩不一致对行星系统体系结构的影响。不考虑光盘自我重力会在迁移的行星上产生人为的扭矩,从而导致行星系统更紧密。在表面密度较高的圆盘中,这种扭矩与正确值的偏差更大。在多行星系统的流体动力学建模中,考虑到扭矩校正至关重要,否则结果有利于更多的包装系统。

The most accurate method for modelling planetary migration and hence the formation of resonant systems is using hydrodynamical simulations. Usually, the force (torque) acting on a planet is calculated using the forces from the gas disc and the star, while the gas accelerations are computed using the pressure gradient, the star, and the planet's gravity, ignoring its own gravity. For the non-migrating the neglect of the disc gravity results in a consistent torque calculation while for the migrating case it is inconsistent. We aim to study how much this inconsistent torque calculation can affect the final configuration of a two-planet system. Our focus will be on low-mass planets because most of the multi-planetary systems, discovered by the Kepler survey, have masses around 10 Earth masses. Performing hydrodynamical simulations of planet-disc interaction, we measure the torques on non-migrating and migrating planets for various disc masses as well as density and temperature slopes with and without considering the disc self-gravity. Using this data, we find a relation that quantifies the inconsistency, use it in an N-body code, and perform an extended parameter study modelling the migration of a planetary system with different planet mass ratios and disc surface densities, in order to investigate the impact of the torque inconsistency on the architecture of the planetary system. Not considering disc self-gravity produces an artificially larger torque on the migrating planet that can result in tighter planetary systems. The deviation of this torque from the correct value is larger in discs with steeper surface density profiles. In hydrodynamical modelling of multi-planetary systems, it is crucial to account for the torque correction, otherwise the results favour more packed systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源