论文标题
超分辨率医学图像的元分割网络
Meta Segmentation Network for Ultra-Resolution Medical Images
论文作者
论文摘要
尽管最近在语义细分方面取得了进展,但医学超解决图像细分仍存在巨大挑战。基于多分支结构的方法可以在计算负担和分割精度之间取得良好的平衡。但是,这些方法中的融合结构需要精心设计以实现理想的结果,从而导致模型冗余。在本文中,我们建议元分割网络(MSN)解决这个具有挑战性的问题。借助元学习,MSN的融合模块非常简单,但有效。 MSN可以通过简单的元学习者快速生成融合层的权重,只需要几个训练样本和时代即可进行收敛。此外,为避免从头开始学习所有分支,我们进一步引入了一种特定的权重共享机制,以实现快速知识适应并在多个分支之间分享权重,从而导致性能提高和显着参数降低。两种具有挑战性的超分辨率医疗数据集Bach和ISIC的实验结果表明,MSN与最先进的方法相比取得了最佳性能。
Despite recent progress on semantic segmentation, there still exist huge challenges in medical ultra-resolution image segmentation. The methods based on multi-branch structure can make a good balance between computational burdens and segmentation accuracy. However, the fusion structure in these methods require to be designed elaborately to achieve desirable result, which leads to model redundancy. In this paper, we propose Meta Segmentation Network (MSN) to solve this challenging problem. With the help of meta-learning, the fusion module of MSN is quite simple but effective. MSN can fast generate the weights of fusion layers through a simple meta-learner, requiring only a few training samples and epochs to converge. In addition, to avoid learning all branches from scratch, we further introduce a particular weight sharing mechanism to realize a fast knowledge adaptation and share the weights among multiple branches, resulting in the performance improvement and significant parameters reduction. The experimental results on two challenging ultra-resolution medical datasets BACH and ISIC show that MSN achieves the best performance compared with the state-of-the-art methods.