论文标题
辐射反馈下的气态动力摩擦:中间质量黑洞会加快还是向下加快?
Gaseous dynamical friction under radiative feedback: do intermediate-mass black holes speed up or down?
论文作者
论文摘要
由于动态摩擦向银河中心迁移,中间质量黑洞(IMBHS)的合并可能有助于超级质量BHS的形成。在这里,我们通过执行3D辐射流动力学模拟,以解决BHS附近的流动结构,从而对气态动力学摩擦进行了重新投资,该动力学摩擦据称对文献中BHS的辐射反馈效率低下。我们考虑$ 10^4〜m_ \ odot $ bh以速度$ v _ {\ rm flow} $移动,通过均质介质,金属级$ z $在$ 0-0.1〜z_ \ odot $和密度$ n _ {\ n_ {\ in_ {\ infty} $的范围内。我们表明,如果$ n _ {\ infty} \ Lessim 10^{6}〜{\ rm cm^{ - 3}} $和$ v _ {\ rm flow} \ lysSim 60〜 {\ rm km〜s km〜s^s^{ - 1}} $,因为bh是Accelitation a accelitation Accelion a Gravent a a Priend a a a a partion a a par n a a a a d. BH周围的气泡,无论$ z $的价值如何。如果$ n _ {\ infty} \ gtrsim 10^{6}〜{\ rm cm^{ - 3}} $,但是,我们的仿真显示了相反的结果。离子化的气泡和壳壳暂时出现,但立即以显着的RAM压力下游。他们最终会汇聚成一个巨大的下游唤醒,重力在重力上向后拖动BH。 BH在$ \ sim 0.01 $ 〜myr的时间表上减速,比银河系磁盘的动态时间尺度短得多。我们的结果表明,遇到茂密云的IMBH迅速迁移到银河系中心,在那里它们可能与他人合并。
Coalescence of intermediate-mass black holes (IMBHs) as a result of the migration toward galactic centers via dynamical friction may contribute to the formation of supermassive BHs. Here we reinvestigate the gaseous dynamical friction, which was claimed to be inefficient with radiative feedback from BHs in literature, by performing 3D radiation-hydrodynamics simulations that solve the flow structure in the vicinity of BHs. We consider a $10^4~M_\odot$ BH moving at the velocity $V_{\rm flow}$ through the homogeneous medium with metallicity $Z$ in the range of $0-0.1~Z_\odot$ and density $n_{\infty}$. We show that, if $n_{\infty} \lesssim 10^{6}~{\rm cm^{-3}}$ and $V_{\rm flow} \lesssim 60~{\rm km~s^{-1}}$, the BH is accelerated forward because of the gravitational pull from a dense shell ahead of an ionized bubble around the BH, regardless of the value of $Z$. If $n_{\infty} \gtrsim 10^{6}~{\rm cm^{-3}}$, however, our simulation shows the opposite result. The ionized bubble and associating shell temporarily appear, but immediately go downstream with significant ram pressure of the flow. They eventually converge into a massive downstream wake, which gravitationally drags the BH backward. The BH decelerates over the timescale of $\sim 0.01$~Myr, much shorter than the dynamical timescale in galactic disks. Our results suggest that IMBHs that encounter the dense clouds rapidly migrate toward galactic centers, where they possibly coalescence with others.