论文标题
使用转移学习和基于LBP的数据增强的基于CNN的青光眼诊断方法
CNN-based approach for glaucoma diagnosis using transfer learning and LBP-based data augmentation
论文作者
论文摘要
青光眼会对视网膜神经纤维造成不可逆转的损害,从而导致视力丧失,如果在早期未发现。因此,在早期诊断青光眼可能会阻止进一步的视力丧失。在本文中,我们提出了一种基于卷积的神经网络(CNN)方法,用于使用视网膜眼镜图像,以自动化青光眼诊断。这种方法采用转移学习技术和局部二进制模式(LBP)数据增强。在拟议的方法中,我们采用Alexnet作为预先培训的CNN模型,用于转移学习。最初,提出的方法将底底图像数据集划分为培训和测试数据。此外,将训练和测试数据中的颜色底面图像分为红色(R),绿色(G)和蓝色(B)通道。此外,基于LBP的数据增强是在培训数据上执行的。具体而言,我们为每个通道计算LPB。最后,增强培训数据用于通过转移学习来训练CNN模型。在测试阶段,测试图像的R,G和B通道被馈送到训练有素的CNN模型,该模型产生了3个决策。我们采用决策水平融合技术来结合从训练有素的CNN模型中获得的决策。对公共轮辋的底面图像数据库的拟议方法的实验评估,实现了青光眼诊断的最新性能。
Glaucoma causes an irreversible damage to retinal nerve fibers which results in vision loss, if undetected in early stage. Therefore, diagnosis of glaucoma in its early stage may prevent further vision loss. In this paper, we propose a convolutional neural network (CNN) based approach for automated glaucoma diagnosis by employing retinal fundus images. This approach employs transfer learning technique and local binary pattern (LBP) based data augmentation. In the proposed approach, we employ Alexnet as a pre-trained CNN model which is used for transfer learning. Initially, the proposed approach divides the fundus image dataset into training and testing data. Further, the color fundus images in training and testing data are separated into red (R), green (G), and blue (B) channels. Additionally, the LBP-based data augmentation is performed on training data. Specifically, we compute LPBs for each of the channel. Finally, the augmented training data is used to train the CNN model via transfer learning. In testing stage, the R, G, and B channels of test image are fed to the trained CNN model which generates 3 decisions. We employ a decision level fusion technique to combine the decisions obtained from the trained CNN model. The experimental evaluation of the proposed approach on the public RIM-ONE fundus image database, achieves state-of-the-art performance for glaucoma diagnosis.