论文标题
数据驱动的符号检测通过基于模型的机器学习
Data-Driven Symbol Detection via Model-Based Machine Learning
论文作者
论文摘要
传统上,数字通信系统中符号检测器的设计依赖于统计通道模型,这些模型描述了传输符号与接收器上观察到的信号之间的关系。在这里,我们回顾了一个结合机器学习(ML)和基于模型的算法的符号检测设计的数据驱动框架。在这种混合方法中,诸如Viterbi方法,BCJR检测和多输入多输出(MIMO)软干扰取消取消(SIC)等著名的基于频道模型的算法通过基于ML的算法进行增强,以删除接收器依赖性的频道模型,从而允许接收者从数据中实现这些算法。所得的数据驱动的接收器最适合在理解较低,高度复杂或无法很好地捕捉基础物理的系统中。我们的方法是独一无二的,因为它只能用专用的神经网络代替基于频道模型的计算,这些神经网络可以从少量数据中训练,同时保持一般算法完整。我们的结果表明,这些技术可以在不知道确切的通道输入输出统计关系的情况下以及在频道状态信息不确定性的情况下产生基于模型的算法的近乎最佳性能。
The design of symbol detectors in digital communication systems has traditionally relied on statistical channel models that describe the relation between the transmitted symbols and the observed signal at the receiver. Here we review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms. In this hybrid approach, well-known channel-model-based algorithms such as the Viterbi method, BCJR detection, and multiple-input multiple-output (MIMO) soft interference cancellation (SIC) are augmented with ML-based algorithms to remove their channel-model-dependence, allowing the receiver to learn to implement these algorithms solely from data. The resulting data-driven receivers are most suitable for systems where the underlying channel models are poorly understood, highly complex, or do not well-capture the underlying physics. Our approach is unique in that it only replaces the channel-model-based computations with dedicated neural networks that can be trained from a small amount of data, while keeping the general algorithm intact. Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship and in the presence of channel state information uncertainty.