论文标题

基于约束的神经网络中的局部传播

Local Propagation in Constraint-based Neural Network

论文作者

Marra, Giuseppe, Tiezzi, Matteo, Melacci, Stefano, Betti, Alessandro, Maggini, Marco, Gori, Marco

论文摘要

在本文中,我们研究了神经网络体系结构的基于约束的表示。我们在拉格朗日框架中提出了学习问题,并研究了一个简单的优化程序,该过程非常适合满足所谓的建筑约束,从可用的监督中学习。提出的局部传播(LP)算法的计算结构基于对由权重,神经输出和Lagrange乘数组成的伴随空间中的鞍点的搜索。模型变量的所有更新均在本地执行,因此LP在神经单元上完全可行,从而规定了深网中梯度消失的经典问题。 LP的背景下描述了流行神经模型的实施,以及那些与反向传播的自然联系的条件。我们还调查了我们容忍对建筑限制的有限违规的环境,并提供了实验证据,表明LP是训练浅网络和深层网络的可行方法,为对更复杂的建筑的进一步调查开辟了道路,可以通过约束易于描述。

In this paper we study a constraint-based representation of neural network architectures. We cast the learning problem in the Lagrangian framework and we investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints, learning from the available supervisions. The computational structure of the proposed Local Propagation (LP) algorithm is based on the search for saddle points in the adjoint space composed of weights, neural outputs, and Lagrange multipliers. All the updates of the model variables are locally performed, so that LP is fully parallelizable over the neural units, circumventing the classic problem of gradient vanishing in deep networks. The implementation of popular neural models is described in the context of LP, together with those conditions that trace a natural connection with Backpropagation. We also investigate the setting in which we tolerate bounded violations of the architectural constraints, and we provide experimental evidence that LP is a feasible approach to train shallow and deep networks, opening the road to further investigations on more complex architectures, easily describable by constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源