论文标题

图形神经网络中的Lagrangian信息传播方法

A Lagrangian Approach to Information Propagation in Graph Neural Networks

论文作者

Tiezzi, Matteo, Marra, Giuseppe, Melacci, Stefano, Maggini, Marco, Gori, Marco

论文摘要

在许多现实世界应用中,数据的特征是复杂的结构,可以自然编码为图。在过去的几年中,深度学习技术的普及使人们对能够处理复杂模式的神经模型的兴趣。特别是,受图形神经网络(GNN)模型的启发,已经提出了不同的体系结构来扩展原始的GNN方案。 GNNS利用一组状态变量,每个变量分配给图节点,以及状态在邻居节点之间的扩散机制,以实现迭代过程,以计算(可学习的)状态过渡函数的固定点。在本文中,我们基于在拉格朗日框架中解决的约束优化任务,提出了一种新颖的方法计算方法和GNN的学习算法。状态收敛过程是由约束满意度机制隐式表示的,并且不需要每个学习过程时期的迭代阶段。实际上,计算结构基于在由权重,神经输出(节点状态)和拉格朗日乘数组成的伴随空间中寻找拉格朗日的鞍点的搜索。通过实验将所提出的方法与其他流行的用于处理图的模型进行比较。

In many real world applications, data are characterized by a complex structure, that can be naturally encoded as a graph. In the last years, the popularity of deep learning techniques has renewed the interest in neural models able to process complex patterns. In particular, inspired by the Graph Neural Network (GNN) model, different architectures have been proposed to extend the original GNN scheme. GNNs exploit a set of state variables, each assigned to a graph node, and a diffusion mechanism of the states among neighbor nodes, to implement an iterative procedure to compute the fixed point of the (learnable) state transition function. In this paper, we propose a novel approach to the state computation and the learning algorithm for GNNs, based on a constraint optimisation task solved in the Lagrangian framework. The state convergence procedure is implicitly expressed by the constraint satisfaction mechanism and does not require a separate iterative phase for each epoch of the learning procedure. In fact, the computational structure is based on the search for saddle points of the Lagrangian in the adjoint space composed of weights, neural outputs (node states), and Lagrange multipliers. The proposed approach is compared experimentally with other popular models for processing graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源