论文标题

多阶段S-T路径:与差异相似

Multistage s-t Path: Confronting Similarity with Dissimilarity

论文作者

Fluschnik, Till, Niedermeier, Rolf, Schubert, Carsten, Zschoche, Philipp

论文摘要

解决Gupta等人的任务。 [ICALP'14],我们提供了第一个全面的研究,以在多阶段图模型中找到短s-t路径,称为多阶段S-T路径问题。在此,给定在同一顶点集但更改边缘集的图形序列,任务是在每个图中找到短的S-T路径(“快照”),以便在找到的路径序列中,连续的S-T路径“相似”。我们通过任何两个连续路径的顶点集(顶点相似度)的对称差(顶点相似度)或边缘集(边缘相似度)的对称差的大小来测量相似性。我们证明,对于仅两个图和最大顶点度四的输入序列,多阶段S-T路径的这两个变体已经是NP- hard。由于这种情况的这一事实和自然应用的动机,例如在交通路线计划中,我们执行参数化的复杂性分析。除其他结果外,对于两个变体,顶点和边缘相似性,我们证明了有关两个变体,顶点和相似度的参数路径长度(解决方案大小)的参数化硬度(w [1] - hard度)。作为一项进一步的概念研究,我们通过要求连续的路径来修改多阶段模型。作为主要的技术结果之一(采用了从非时空设置已知的所谓代表集),我们证明,差异允许参数解决方案大小的固定参数易处理性,并将我们的W [1] - hardness证明相应相似性案例对比。我们还提供了有关降低有效数据(内核化)的部分积极结果。

Addressing a quest by Gupta et al. [ICALP'14], we provide a first, comprehensive study of finding a short s-t path in the multistage graph model, referred to as the Multistage s-t Path problem. Herein, given a sequence of graphs over the same vertex set but changing edge sets, the task is to find short s-t paths in each graph ("snapshot") such that in the found path sequence the consecutive s-t paths are "similar". We measure similarity by the size of the symmetric difference of either the vertex set (vertex-similarity) or the edge set (edge-similarity) of any two consecutive paths. We prove that these two variants of Multistage s-t Path are already NP-hard for an input sequence of only two graphs and maximum vertex degree four. Motivated by this fact and natural applications of this scenario e.g. in traffic route planning, we perform a parameterized complexity analysis. Among other results, for both variants, vertex- and edge-similarity, we prove parameterized hardness (W[1]-hardness) regarding the parameter path length (solution size) for both variants, vertex- and edge-similarity. As a further conceptual study, we then modify the multistage model by asking for dissimilar consecutive paths. As one of the main technical results (employing so-called representative sets known from non-temporal settings), we prove that dissimilarity allows for fixed-parameter tractability for the parameter solution size, contrasting our W[1]-hardness proof of the corresponding similarity case. We also provide partially positive results concerning efficient and effective data reduction (kernelization).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源