论文标题
由Hölder驱动的延迟方程的收敛性$β\ in(\ frac13,\ frac12)$驱动的延迟方程
Convergence of delay equations driven by a Hölder continuous function of order $β\in(\frac13,\frac12)$
论文作者
论文摘要
在本说明中,我们表明,当延迟变为零时,(\ frac13,\ frac12)$ priond oder $β\驱动的多维延迟微分方程的解决方案将与超emum norm comlemant in(\ frac12,\ frac12)收敛到方程式,以毫不延迟。作为应用程序,我们讨论了随机微分方程的应用。
In this note we show that, when the delay goes to zero, the solution of multidimensional delay differential equations driven by a Hölder continuous function of order $β\in (\frac13,\frac12)$ converges with the supremum norm to the solution for the equation without delay. As an application, we discuss the applications to stochastic differential equations.